Assignment 9

1. Using Euler's method, approximate $y(1)$ and $z(1)$ with $h=0.5$ and again with $h=0.25$ for the initialvalue problem defined by
```
            y
            z
        y(0)=1
        z ( 0 ) = 2
f = @(t, w)( [2*w(1) + w(2) + t - 1;w(1) - 2*w(2) - t - 2] );
w0 = [1 2]';
h = 0.5;
ts = 0:h:1;
ws = zeros( 2, 3 );
ws(:, 1) = w0;
for k = 1:2
    ws(:, k+1) = ws(:, k) + h*f(ts(k), ws(:,k));
end
WS
    ws = 1.0 2.5 4.5
    2.0 -0.5 0.0
h = 0.25;
tss = 0:h:1;
wss = zeros( 2, 5 );
wss(:, 1) = w0;
for k = 1:4
    wss(:, k+1) = wss(:, k) + h*f(tss(k), wss(:,k));
end
wSS
\begin{tabular}{rllll} 
WSS \(=\) & 1.0 & 1.75 & 2.625 & 3.875 \\
2.0 & 0.75 & 0.25 & 0.15625 & 0.7890625 \\
&
\end{tabular}
```

Important: Note how too large a step size introduced a completely erroneous approximate of $z(0.5)$ when $h=0.5$? The approximation was $z(0.5) \approx-0.5$, which is negative, even though when we used $h=0.25$, we found the approximation $z(0.5) \approx 0.25$.
2. In Question 1, approximate $y(0.1)$ and $z(0.1)$ using one step of Euler's method.

```
f = @(t, w)( [2*w(1) + w(2) + t - 1; w(1) - 2*w(2) - t - 2] );
t0 = 0;
w0 = [1 2]';
h = 0.1;
w1 = w0 + h*f(t0, w0)
    w1 = 1.3
    1.5
```

3. In Question 1, approximate $y(0.1)$ and $z(0.1)$ using one step of Heun's method.
```
f=@(t,w)( [2*w(1) +w(2) + t - 1;w(1) - 2*w(2) - t - 2] );
w0 = [1 2]';
t0 = 0;
h = 0.1;
s0 = f(t0, w0)
    s0 = 3
        -5
s1 = f(t0 + h,w0 + h*s0)
    s1 = 3.2
        -3.8
w1 = w0 + h*(s0 + s1)/2.0
    w1 = 1.31
        1.56
```

4. In Question 1, approximate $y(0.1)$ and $z(0.1)$ using one step of the $4^{\text {th }}$-order Runge-Kutta method.
```
f=@(t,w)([2*w(1) +w(2) + t - 1;w(1) - 2*w(2) - t - 2] );
w0 = [1 2]';
t0 = 0;
h = 0.1;
s0 = f(t0, w0)
    s0 = 3
    -5
s1 = f(t0 + h/2,w0 + h/2*s0)
    s1 = 3.1
        -4.4
s2 = f(t0 + h/2,w0 + h/2*s1)
    s2 = 3.14
        -4.455
s3 = f(t0 + h, w0 + h *s2)
    s3 = 3.2825
        -3.895
w1 = w0 + h*(s0 + 2*s1 + 2*s2 + s3)/6.0
    w1 = 1.312708333333333
        1.556583333333333
```

5. Given the results in Questions 2 and 3, what is the value of a for the adaptive Euler-Heun method for this one step if $\varepsilon_{\mathrm{abs}}=0.1$? What would be the next value of h used, and would you be recalculating the first point, or would you be calculating the value at $t=0.1+h$ with the new value of h ?
```
y = [1.3 1.5]';
z = [1.31 1.56]';
eps_abs = 0.1;
h = 0.1;
a = (h*eps_abs)/(2*norm(y - z))
    a = 8.219949365267860e-02
h = 0.9*a*h
    h = 7.397954428741075e-03
```

You would need to recalculate with half the previous step size. Note that you may end up halving multiple times, but this would only be for the first step-a smaller initial h should have been chosen (less than 0.1).
6. Convert the following $3^{\text {rd }}$-order initial-value problem into a system of $1^{\text {st }}$-order initial value problems:

$$
\begin{aligned}
y^{(3)}(t) & =2 y(t)+y^{(1)}(t)+0.5 y^{(2)}(t)+t-1 \\
y(0) & =1.2 \\
y^{(1)}(0) & =1.3 \\
y^{(2)}(0) & =1.4
\end{aligned}
$$

This would result in

$$
\mathbf{w}(t)=\left(\begin{array}{c}
w_{0}(t) \\
w_{1}(t) \\
w_{2}(t)
\end{array}\right)=\left(\begin{array}{c}
y(t) \\
y^{(1)}(t) \\
y^{(2)}(t)
\end{array}\right) \text { so } \quad \mathbf{w}^{(1)}(t)=\left(\begin{array}{l}
w_{0}^{(1)}(t) \\
w_{1}^{(1)}(t) \\
w_{2}^{(1)}(t)
\end{array}\right)=\left(\begin{array}{l}
y^{(1)}(t) \\
y^{(2)}(t) \\
y^{(3)}(t)
\end{array}\right) \quad \text { with } \mathbf{w}(0)=\left(\begin{array}{l}
1.2 \\
1.3 \\
1.4
\end{array}\right)
$$

7. Convert the following system of three $2^{\text {rd }}$-order initial-value problem into a system of $1^{\text {st }}$-order initial value problems.

$$
\begin{aligned}
x^{(2)}(t) & =2 x(t) y^{(1)}(t)-1.2 \\
y^{(2)}(t) & =4 y(t) z^{(1)}(t)-1.7 \\
z^{(2)}(t) & =3 z(t) x^{(1)}(t)-1.9 \\
x(0) & =1.4 \\
x^{(1)}(0) & =-1.5 \\
y(0) & =1.6 \\
y^{(1)}(0) & =-1.9 \\
z(0) & =0.1 \\
z^{(1)}(0) & =-1.3
\end{aligned}
$$

This would result in

$$
\begin{aligned}
\mathbf{w}(t)=\left(\begin{array}{c}
w_{0}(t) \\
w_{1}(t) \\
w_{2}(t) \\
w_{3}(t) \\
w_{4}(t) \\
w_{5}(t)
\end{array}\right)=\left(\begin{array}{c}
x(t) \\
x^{(1)}(t) \\
y(t) \\
y^{(1)}(t) \\
z(t) \\
z^{(1)}(t)
\end{array}\right) \text { so } \quad \mathbf{w}^{(1)}(t) & =\left(\begin{array}{c}
w_{0}^{(1)}(t) \\
w_{1}^{(1)}(t) \\
w_{2}^{(1)}(t) \\
w_{3}^{(1)}(t) \\
w_{4}^{(1)}(t) \\
w_{5}^{(1)}(t)
\end{array}\right)=\left(\begin{array}{l}
x^{(1)}(t) \\
x^{(2)}(t) \\
y^{(1)}(t) \\
y^{(2)}(t) \\
z^{(1)}(t) \\
z^{(2)}(t)
\end{array}\right) \text { with } \mathbf{w}(0)=\left(\begin{array}{r}
1.4 \\
-1.5 \\
1.6 \\
-1.7 \\
0.1 \\
w_{1}(t) \\
-1.3
\end{array}\right) \\
& =\left(\begin{array}{c}
2 w_{0}(t) w_{3}(t)-1.2 \\
w_{3}(t) \\
4 w_{2}(t) w_{5}(t)-1.7 \\
w_{5}(t) \\
3 w_{4}(t) w_{1}(t)-1.9
\end{array}\right)
\end{aligned}
$$

8. Use three steps of the shooting method to approximate a solution to the boundary-value problem defined by

$$
\begin{aligned}
u^{(2)}(x) & =0.3 u^{(1)}(x)+0.1 u(x)-x-0.2 \\
u(0) & =2 \\
u(1) & =3
\end{aligned}
$$

At each step of the shooting method, you will use Euler's method with $h=0.2$.

```
% This is the set-up for our second-order ODE, which is
% converted into a system of two first-order ODEs:
f = @(x, w)( [w(2); 0.3*w(2) + 0.1*w(1) - x - 0.2] );
h = 0.2;
xs = 0:h:1;
a = 0;
u_a = 2;
b = 1;
u_b = 3;
% This is our initial guess at a slope
s0 = (u_b - u_a)/(b - a)
    s0 = 1
% We are applying Euler's method with h = 0.2, so we will approximate
% the solution at 0.2, 0.4, 0.6, 0.8 and 1.0, and at 0, we have the two
% initial conditions u(a) = 2 and u'(a) = s0
us = [u_a 0 0 0 0 0
    s0 0 0 0 0 0];
% Run Euler's method
for k = 1:5
    us(:, k + 1) = us(:, k) + h*f(xs(k), us(:, k));
end
% Here are the approximations
% - Recall, the first row is y(0) and approximations of y(0.2), y(0.4),\ldots
% and the second row is y'(0) and approximations of y'(0.2), y'(0.4), ...
us
        us = 2.00000
% The estimate of u(b) with this approximation is the last
% entry of the first row:
u0b = us(1, end)
        u0b = 3.0534
```

```
% Now we calculate the second slope to use, by correcting for the
% error of the first approximation
% - Recall that we overshot, so this slope will be slightly less
s1 = (2*u_b - us(1, end) - u_a)/(b - a)
    s1 = 0.94655
% Similar set-up as above, and run Euler's method:
us = [u_a 0 0 0 0 0
    s1 0 0 0 0 0];
for k = 1:5
    us(:, k + 1) = us(:, k) + h*f(xs(k), us(:, k));
end
% You will see that this time, we undershot:
% - We wanted to find an initial slope such that y(b) = 3.0
us
        us = 2.00000 
% Here is our estimate of y(b) with the initial slope s1
u1b = us(1, end);
    u1b = 2.9927
% Now that we have two initial slopes, we now apply the secant
% method on the root-finding
%
% u (b) - u = 0
% s b
%
% where this is an expression in the initial slope 's'
s2 = (s0*(u1b - u_b) - s1*(u0b - u_b))/((u1b - u_b) - (u0b - u_b))
    s2 = 0.95295
% Repeat...
us = [u_a 0 0 0 0 0
    s2 0 0 0 0 0];
for k = 1:5
    us(:, k + 1) = us(:, k) + h*f(xs(k), us(:, k));
end
```

us

$$
\begin{array}{rrrrrr}
\text { us }=2.00000 & 2.19059 & 2.39261 & 2.59952 & 2.80442 & 3.00000 \\
0.95295 & 1.01012 & 1.03454 & 1.02447 & 0.97792 & 0.89269
\end{array}
$$

You will note that $u(0)=2$ and $u(1)=3$, so we have found an approximation of a solution to this BVP, and thus approximations are $u(0.2)=2.19059, u(0.4)=2.39261, u(0.6)=2.59952$ and $u(0.8)=2.8442$.
9. The actual solution to the boundary-value problem given in Question 8 is

$$
u(x)=3 \frac{\mathrm{e}^{-0.2 x}\left(10 \mathrm{e}^{0.5}-7\right)-\mathrm{e}^{0.5 x}\left(10 \mathrm{e}^{-0.2}-7\right)}{\mathrm{e}^{0.5}-\mathrm{e}^{-0.2}}+10 x-28
$$

How close is your approximation to this solution at $x=0.2,0.4,0.6$ and 0.8 ?
We can define

```
u = @(x)( 3*(
    exp(-0.2*x)*(10*exp(0.5) - 7) - exp(0.5*x)*(10*exp(-0.2) - 7)
)/(exp(0.5) - exp(-0.2)) + 10*x - 28 );
```

Thus, we see that the errors are:

```
>>us( 1, : ) - u( 0:0.2:1 )
    ans =-3.5527e-15 -0.013478 -0.020774 -0.021381 -0.014694 -3.5527e-15
```

The errors associated with $u(0)$ and $u(1)$ (the boundary values) are a result of numeric errors in the calculations of $u(x)$ at 0 and 1 , respectively; however, the errors of the approximations at the intermediate points are due to the errors in the approximation due to using Euler's method. The maximum value of the $2^{\text {nd }}$ derivative on the interval $[0,1]$ of the solution is 0.3 , and thus, the maximum error should be less than the error given by the approximation $1 / 2(b-a) h u^{(2)}(\xi)$ where $0 \leq \xi \leq 1$ and the maximum of the $2^{\text {nd }}$ derivative occurs at $x=0$ when $u^{(2)}(0)=0.3$, so $1 / 2 \cdot 1 \cdot 0.2 \cdot 0.3=0.03$, and we note all the errors in absolute value are less than this.

Acknowledgement: Anthony Zhelnakov for pointing out the answer to Question 5 could be better and Andy Liu for suggesting that the slope vectors should be printed for Questions 3 and 4.

